Connectivity mapping, a web-based informatics method, was successfully used to identify aspirin as a candidate drug that could modulate the differentiation of DPCs. Aspirin was shown to induce odontogenic differentiation in DPCs in vitro and this, together with its anti-inflammatory effects...
pubmed.ncbi.nlm.nih.gov
Results: The GEO database search identified a specific gene expression signature for osteo/odontogenic differentiation. Analysis using ssCMap found that acetylsalicylic acid [(ASA)/aspirin] was the drug with the strongest correlation with that gene signature. The treatment of DPCs with 0.05 mmol L-1 ASA showed increased alkaline phosphatase activity (P < 0.001), mineralization (P < 0.05), and increased the expression of the osteo/odontogenic genes, DMP1 and DSPP (P < 0.05). Low concentration (0.05 mmol L-1 ) ASA reduced inflammatory cytokines IL-6 (P < 0.001), CCL21 (P < 0.05) and MMP-9 (P < 0.05) in an ex vivo pulpitis model.
Conclusions: Connectivity mapping, a web-based informatics method, was successfully used to identify aspirin as a candidate drug that could modulate the differentiation of DPCs. Aspirin was shown to induce odontogenic differentiation in DPCs in vitro and this, together with its anti-inflammatory effects, makes it a potential candidate for vital pulp therapies.